Note on mixed linear integral equations
نویسندگان
چکیده
منابع مشابه
A computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملModified homotopy method to solve non-linear integral equations
In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...
متن کاملA Note on Volterra Integral Equations and Topological Dynamics
A complete discussion of our results along with the proofs of the theorems noted here will appear in [3] and [4]. In this note we shall restrict ourselves to a description of the semiflow generated by (1), and we do this in the case where x, ƒ, a and g are real-valued. Because of the generality of our methods, they can be applied to many problems. Some of these applications are treated in [4]. ...
متن کاملApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملNote on Integral Distances
A planar point set S is called an integral set if all the distances between the elements of S are integers. We prove that any integral set contains many collinear points or the minimum distance should be relatively large if |S| is large.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1912
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1912-02210-3